安福生活网

省考数量关系常考18种题型 省考数量关系题一般对几道题合适

网络整理 资讯
怎么计算直角三角形的最长边 来挑战!省考数量关系模块3月10下午十道题,你能做对几道

1 、 (单选题) 用a、b、c三种不同型号的客车送一批会议代表到火车站,用6辆a型车,5趟可以送完;用5辆a型车和10辆b型车,3趟可以送完;用3辆b型车和8辆c型车,4趟可以送完。问先由3辆a型车和6辆b型车各送4趟,剩下的代表还要由2辆c型车送几趟?A.3趟B.4趟C.5趟D.6趟正确答案:B解析之一步,本题考查基础应用题。第二步,由5趟送完和3趟送完有: 6a5=(5a+10b)3,化简得a=2b①,总人数为60b;由4趟送完有:60b=(3b+8c)4,化简得3b=2c②。由①、②得a︰b︰c=4︰2︰3,赋值a、b、c型车可载人数分别为4、2、3,则总人数为60b=260=120(人)。第三步,剩下的人数为120-(43+26)4=24(人),还要由2辆c型车送

(趟)。因此,选择B选项。2 、 (单选题) 嘉陵江是长江的支流,嘉陵江的水流速度为每小时3千米,长江的水流速度为每小时4千米,一艘船上午8点钟从起点出发,沿嘉陵江顺水航行2小时,行驶了56千米达到长江,在长江上还要逆水航行126千米才能到达终点。这艘船到达终点的时间是( )点钟。A.13B.14C.15D.16正确答案:D解析之一步,本题考查行程问题,属于流水行船类。第二步,设船速为v千米/时,则船顺水航行有56=(v+3)2,解得v=25。逆水有126=(25-4)t,解得t=6。8点出发,经过2小时又6小时,是8+2+6=16点钟。因此,选择D选项。3 、 (单选题) 一列队伍沿直线匀速前进,某时刻一传令兵从队尾出发,匀速向队首前进传送命令,他到达队首后马上以原速返回,当他返回队尾时,队伍行进的距离正好与整列队伍的长度相等。问传令兵从出发到最后到达队尾所行走的整个路程是队伍长度的多少倍?A.1.5B.2C.1+

省考数量关系常考18种题型 省考数量关系题一般对几道题合适

D.1+

正确答案:C解析之一步,本题考查行程问题,属于基本行程类,用方程法解题。第二步,设队伍的长度为s,传令兵、队伍的速度分别为

。当传令兵从队尾到队首时,有s=

;当传令兵从队首到队尾时,有s=

;根据队伍行进的距离正好与整列队伍的长度相等,可得s=

。联立三式可得

,解得

。第三步,传令兵的速度是队伍的(1+

)倍,则传令兵所走的整个路程是队伍所走路程的(1+

)倍(时间一定,速度与路程成正比),即传令兵所走的整个路程为队伍长度的(1+

)倍。因此,选择C选项。解法二:之一步,本题考查行程问题,属于基本行程类,用数形结合法解题。第二步,如图所示,初始时传令兵位于A点,赋值队伍长度AB为1。传令兵到达队首后,队伍行进到C点,设队伍的行进路程BC为S,则传令兵所走的路程为1+S。当传令兵从队首C点返回到队尾B点时,CB=S,此时队伍从C点行进到D点,由于AB=BD=1,则CD=1-S。

第三步,传令兵的速度与队伍的速度之比为定值,则有

(时间一定,速度与路程成正比),解得S=

。故传令兵所走的总路程为1+2S=1+

,是队伍长度的(1+

)倍。因此,选择C选项。4 、 (单选题) 生产一件甲产品消耗4份原料A、2份原料B、3份原料C,可获得1.1万元利润;生产一件乙产品3份原料A、5份原料B,可获得1.3万元利润。现有40份原料A、38份原料B、15份原料C用于生产,问最多可获得多少万元利润?A.10.2B.12.0C.12.2D.12.8正确答案:C解析之一步,本题考查经济利润问题,属于最值优化类。第二步,要使获利最多,则应让产品数尽可能的多。由题可知,生产甲、乙产品各一件时共需要7份A、7份B、3份C,已知总共有40份A、38份B、15份C,那么可以够甲、乙各生产5件,总利润为(1.1+1.3)5=12(万元);此时原料还剩余5份A、3份B,由于每件乙产品的利润比甲高1.3-1.1=0.2(万元),所以可以少生产一件甲,而把相应原料来生产乙,即当甲产品生产4个、乙产品生产6个时,利润更大,更大利润为12+0.2=12.2(万元)。因此,选择C选项。5 、 (单选题) 1.01,2.02,3.04,5.07,( ),13.16A.7.09B.7.10C.8.10D.8.11正确答案:D解析之一步,本题考查非整数数列中的小数数列。第二步,小数点前的数字分别为:1、2、3、5、( )、13,观察发现1+2=3、2+3=5、3+5=8、5+8=13,则( )处应为8;小数点后的数字分别为:01、02、04、07、( )、16,做差分别为1、2、3,是公差为1的等差数列,差数列下一项为4,则( )处应为11,答案为8.11。因此,选择D选项。6 、 (单选题) 某水库决定对堤坝进行处理。如图所示,水库大坝的迎水面的坡角为,坝高为10米。现要加高大坝,使坡度为1∶1(坡度为坡角的正切值),那么大坝要加高多少米?

A.10cot-10B.10tan-10C.10tanD.10cot正确答案:A解析之一步,本题考查几何问题,属于平面几何类。第二步,如下图所示,直角△ABC中,cot=

,则AB=10cot。加高后,△ABD中的两条直角边之比为1∶1,即BD=AB=10cot。

第三步,大坝要加高CD=BD-BC=(10cot-10)米。因此,选择A选项。7 、 (单选题) 某公司要买100本便签纸和100支胶棒,附近有两家超市。A超市的便签纸0.8元一本,胶棒2元一支且买2送1。B超市的便签纸1元一本且买3送1,胶棒1.5元一支。如果公司采购员要在这两家超市买这些物品,则他至少要花多少元钱?A.208.5B.183.5C.225D.230正确答案:A解析之一步,本题考查经济利润问题,属于最值优化类。第二步,便签纸,A超市0.8元一本,则4本需0.84=3.2(元);B超市1元一本且买3送1,则4本需31=3(元)。故优先从B超市买便签纸,以4本为一组,买100本需10043=75(元)。第三步,胶棒,A超市2元一支且买2送1,则3支需22=4(元);B超市1.5元一支,则3支需1.53=4.5(元)。故优先从A超市买胶棒,以3支为一组,买33组,即99支需9934=132(元),剩余1支在B超市购买,需1.5元,则买100支需132+1.5=133.5(元)。第四步,采购员至少要花75+133.5=208.5(元)。因此,选择A选项。8 、 (单选题) 一直角三角形最长边是10厘米,最短边是6厘米,则这个三角形的面积是多少平方厘米?A.24B.30C.48D.60正确答案:A解析之一步,本题考查几何问题,属于平面几何类。第二步,在直角三角形中最长边即为斜边。根据勾股定理a2+b2=c2,另一条直角边长度为

(厘米),故这个三角形的面积为

(平方厘米)。因此,选择A选项。9 、 (单选题) 甲、乙、丙三人共同完成一项工程,他们的工作效率之比是5∶4∶6。先由甲、乙两人合作6天,再由乙单独做9天,完成全部工程的60%。若剩下的工程由丙单独完成,则丙所需要的天数是:A.9B.11C.10D.15正确答案:C解析之一步,本题考查工程问题,属于效率类。第二步,由效率之比是5∶4∶6,赋值甲、乙、丙的效率分别为5、4、6。根据甲、乙两人合作6天,再由乙单独做9天,完成全部工程的60%,可得工程总量为

。第三步,剩下的工程量为15040%=60,丙单独完成需要606=10(天)。因此,选择C选项。10 、 (单选题) 一个队伍7个人,小明首先站在第3位,那么向后转以后是第几位?A.3B.4C.5D.7正确答案:C解析之一步,本题考查基础应用题。第二步,由首先站在第3位,可知队列排序为○,○是小明。第三步,由向后转,可知从后往前数,小明前面有4个人,排第5。因此,选择C选项。

数量关系最简单的是哪个模块 公考数量关系题如何稳拿