椭圆属于圆锥曲线这一章节,在高考中,占的比重比较大,所以需要同学们记熟它们的性质和多做练习,从练习中发现错误,做好笔记,做好错题集,及时归纳总结。
1.椭圆的概念
平面内与两个定点F1,F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.
*** P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0,且a,c为常数:
(1)若a>c,则 *** P为椭圆;
(2)若a=c,则 *** P为线段;
(3)若a 第1课时 椭圆及其性质 思维提升: 椭圆定义的应用技巧 (1)椭圆定义的应用主要有:求椭圆的标准方程,求焦点三角形的周长、面积及弦长、最值和离心率等. (2)通常定义和余弦定理结合使用,求解关于焦点三角形的周长和面积问题. 思维提升: (1)利用椭圆几何性质的注意点及技巧 ①注意椭圆几何性质中的不等关系 在求与椭圆有关的一些范围问题时,经常用到x,y的范围,离心率的范围等不等关系. ②利用椭圆几何性质的技巧 求解与椭圆几何性质有关的问题时,理清顶点、焦点、长轴、短轴等基本量的内在联系. (2)求椭圆的离心率问题的一般思路 求椭圆的离心率或其范围时,一般是依据题设得出一个关于a,b,c的等式或不等式,即可得离心率或离心率的范围.