安福生活网

泰勒公式怎么展开 泰勒公式是怎么展开的

网络整理 热点

大家好,今天小编来为大家解答泰勒公式怎么展开这个问题,泰勒公式是怎么展开的很多人还不知道,现在让我们一起来看看吧!

泰勒展开公式是什么?

泰勒公式怎么展开 泰勒公式是怎么展开的

展开公式如下:

泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。

泰勒公式得名于英国数学家布鲁克泰勒,他在1712年的一封信里首次叙述了这个公式。泰勒公式是为了研究复杂函数性质时经常使用的近似方法之一,也是函数微分学的一项重要应用内容。

泰勒公式的余项有两类:

一类是定性的皮亚诺余项,另一类是定量的拉格朗日余项。这两类余项本质相同,但是作用不同。一般来说,当不需要定量讨论余项时,可用皮亚诺余项(如求未定式极限及估计无穷小阶数等问题);当需要定量讨论余项时,要用拉格朗日余项(如利用泰勒公式近似计算函数值)。

以上内容参考:百度百科-泰勒公式

泰勒级数展开公式是什么?

泰勒级数展开公式如下图所示。

其中x0x0为区间(a,b)中的某一点,x0∈(a,b),变量xx也在区间(a,b)内。展开条件是:有实函数f,f在闭区间[a,b]是连续的,f在开区间(a,b)是n+1阶可微。

泰勒公式来源:

泰勒公式得名于英国数学家布鲁克泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯格雷高里已经发现了它的特例。拉格朗日在1797年之前,最先提出了带有余项的现在形式的泰勒定理。

泰勒公式是怎么展开的,常见的泰勒展开公式

1.sinx∧2的泰勒公式展开式:sinx∧2=1/2(1-cos2x)。

2.泰勒公式是一个用函数在某点的信息描述其附近取值的公式。

3.如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。

4.函数(function)的定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。

5.函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y和x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。

6.其中核心是对应法则f,它是函数关系的本质特征。

泰勒公式展开是什么?

泰勒公式展开是:

泰勒公式是将一个在x=x0处具有n阶导数的函数f(x)利用关于(x-x0)的n次多项式来逼近函数的方法。

若函数f(x)在包含x0的某个闭区间[a,b]上具有n阶导数,且在开区间(a,b)上具有(n+1)阶导数,则对闭区间[a,b]上任意一点x,成立下式:

其中,f(n)(x)表示f(x)的n阶导数,等号后的多项式称为函数f(x)在x0处的泰勒展开式,剩余的Rn(x)是泰勒公式的余项,是(x-x0)n的高阶无穷小。

实际应用中:

泰勒公式需要截断,只取有限项,一个函数的有限项的泰勒级数叫做泰勒展开式。泰勒公式的余项可以用于估算这种近似的误差。

泰勒展开式的重要性体现在以下三个方面:

幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。泰勒级数可以用来近似计算函数的值。

常用泰勒公式展开是怎么样的?

泰勒公式在x=a处展开为

f(x)=f(a)+f'(a)(x-a)+(1/2!)f''(a)(x-a)^2+……+(1/n!)f(n)(a)(x-a)^n+……

设幂级数为f(x)=a0+a1(x-a)+a2(x-a)^2+……①

令x=a则a0=f(a)

将①式两边求一阶导数,得

f'(x)=a1+2a2(x-a)+3a3(x-a)^2+……②

令x=a,得a1=f'(a)

对②两边求导,得

f"(x)=2!a2+a3(x-a)+……

令x=a,得a2=f''(a)/2!

继续下去可得an=f(n)(a)/n!

所以f(x)在x=a处的泰勒公式为:

f(x)=f(a)+f'(a)(x-a)+[f''(a)/2!](x-a)^2+……+[f(n)(a)/n!](a)(x-a)^n+……

泰勒公式展开在物理学应用

物理学上的一切原理定理公式都是用泰勒展开做近似得到的简谐振动对应的势能具有x^2的形式,并且能在数学上精确求解。为了处理一般的情况,物理学首先关注平衡状态,可以认为是“不动”的情况。为了达到“动”的效果,会给平衡态加上一个微扰,使物体振动。

在这种情况下,势场往往是复杂的,因此振动的具体形式很难求解。这时,Taylor展开就开始发挥威力了!

泰勒展开的公式及定义

泰勒公式:

f(x)=f(x0)+f'(x0)*(x-x0)+f''(x0)/2!*(x-x0)^2+...+f(n)(x0)/n!*(x-x0)^n

定义:

泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数

在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数

在这一点的邻域中的值。

扩展资料

泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为

一个关于(x-x.)多项式和一个余项的和。

公式:f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!•(x-x.)^2,+f'''(x.)/3!•(x-x.)^3+……+f(n)(x.)/n!•(x-x.)^n+Rn

其中Rn=f(n+1)()/(n+1)!•(x-x.)^(n+1),这里在x和x.之间,该余项称为拉格朗日型的余项。

注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。

OK,本文到此结束,希望对大家有所帮助。